Optimization of centrifugal casting process parameters by Taguchi method to reduce shrinkage porosity ratio of K417 superalloy

Author:

Wang Dongchao1,Liao Minle1,Wang Ye2,Liu Guohuai1ORCID,Wang Zhaodong1

Affiliation:

1. The State Key Laboratory of Rolling and Automation, Northeastern University 110819, Shenyang, China

2. School of Material Science and Chemical Engineering, Harbin University of Science and Technology 150008, Harbin, China

Abstract

The process parameters were optimized by simulation and verification experiments using orthogonal experimental design and the Taguchi method to lessen the tendency of significant shrinkage porosity in the centrifugal cast ring parts of K417 nickel-based superalloy. Advanced Porosity Model (APM) in ProCAST was used to predict the shrinkage porosity of centrifugal castings, and the effects of centrifugal speed, pouring speed, pouring temperature and preheating temperature of the mold were investigated on the shrinkage porosity ratio of the castings. According to the results, the parameter that has the greatest influence on the shrinkage porosity ratio of centrifugal casting is the centrifuge speed, followed by the preheating temperature of the mold, and the pouring temperature and pouring speed have relatively small effects on it. The optimized parameters were proposed as follows: centrifugal speed of 500 r/min, pouring speed of 225 mm/s, pouring temperature of 1400[Formula: see text], and mold preheating temperature of 50[Formula: see text], which could effectively reduce the formation of shrinkage porosity of the K417 centrifugal casting rings.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3