Apposite solutions to fractional nonlinear Schrödinger-type evolution equations occurring in quantum mechanics

Author:

Islam Md. Tarikul1,Akbar Md. Ali2,Guner Ozkan3,Bekir Ahmet4ORCID

Affiliation:

1. Department of Mathematics, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh

2. Department of Applied Mathematics, University of Rajshahi, Rajshahi, Bangladesh

3. Department of International Trade, Çankırı Karatekin University, Cankiri, Turkey

4. Neighborhood of Akcaglan, No. 28/4, Imarli Street, 26030 Eskisehir, Turkey

Abstract

Nonlinear evolution equations of arbitrary order bearing a significantly broad range of capability to illustrate the underlying behavior of naturalistic structures relating to the real world, have become a major source of attraction of scientists and scholars. In quantum mechanics, the nonlinear dynamical system is most reasonably modeled through the Schrödinger-type partial differential equations. In this paper, we discuss the (2+1)-dimensional time-fractional nonlinear Schrödinger equation and the (1+1)-dimensional space–time fractional nonlinear Schrödinger equation for appropriate solutions by means of the recommended enhanced rational [Formula: see text]-expansion technique adopting Cole–Hopf transformation and Riccati equation. The considered equations are turned into ordinary differential equations by implementing a composite wave variable replacement alongside the conformable fractional derivative. Then a successful execution of the proposed method has been made, which brought out supplementary innovative outcomes of the considered equations compared with the existing results found so far. The well-generated solutions are presented graphically in 3D views for numerous wave structures. The high performance of the employed technique shows the acceptability which might provide a new guideline for research hereafter.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Reference53 articles.

1. Mathematics in Science and Engineering;Podlubny I.,1999

2. Fractional sub-equation method and its applications to nonlinear fractional PDEs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3