The impurity states in InGaAsP/InP coaxial double quantum well wires with the effects of electric and magnetic fields

Author:

Hu Min1ORCID,Wang Hailong2,Gong Qian3

Affiliation:

1. School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China

2. Shandong Provincial Key Laboratory of Laser Polarization, and Information Technology, College of Physics and Engineering, Qufu Normal University, Qufu 273165, China

3. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

Abstract

The hydrogen donor impurity states are calculated in [Formula: see text] coaxial double quantum well wires by the plane wave method under the theoretical framework of effective mass envelope function approximation. The binding energies of impurity in [Formula: see text] state and [Formula: see text] state are obtained as the functions of impurity position, distance between the inner and outer quantum wires, magnetic and electric field strengths. Transition energies are calculated as the functions of impurity position, distance between the inner and outer quantum wires. The effects of quantum wire thickness and distance of quantum wires on impurity states are analyzed in detail. It is found that the effects of electric field and magnetic field on binding energy of [Formula: see text] state are different for impurity located at different positions.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3