First-principles studies on electronic structure and optical properties of two-dimensional ZrO2

Author:

Wang Shengzhao1,Chen Lanli1,Liu Bin1,Song Jinfan1,Li Chao1

Affiliation:

1. Nanyang Institute of Technology, School of Mathematics and Physics, Henan Province 473004, China

Abstract

Two-dimensional 1T-ZrO2 material is investigated via first-principles calculations based on density functional theory (DFT) method. The band gap of cubic, tetragonal and monoclinic ZrO2 is 6.095 eV, 5.784 eV and 5.835 eV respectively obtained in the paper also. [Formula: see text] method is determined to adopt to study two-dimensional 1T-ZrO2 in the paper. The results show that the band gap of 1T-ZrO2 material is 7.513 eV and it is an indirect wide band gap semiconductor structure. At the same time, it can be seen from the density of states (DOS) that the valence band of the 1T-ZrO2 material is mainly due to the contribution of 2p electron of O atom. 4p, 4d and 5s electron of Zr atom also contributes a little to the valence band. 4p, 4d, 5s electron of Zr atom and 2s, 2p electron of O atom contribute to the conduction band, but main contribution has come from 4d of Zr atom. These results are in good agreement with the electron orbitals diagram. 1T-ZrO2 material has maximum reflectivity of 11.61% and refractive index of 1.62. It has high absorption coefficient and energy loss in this region. The peak of dielectric function may be mainly caused by the inter-band transition from electron-occupied state to non-occupied state. The real part of the photoconductivity tends to zero in the visible region with low energy and the maximum conductivity of 2.087 corresponds to the peak of other photoelectric properties of 1T-ZrO2 material.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3