Affiliation:
1. College of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China
2. College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
Abstract
In this paper, the adsorption behavior of intrinsic black phosphorus (BP) and BP doped with five atoms of O, Si, S, Cu and Zn on Pb[Formula: see text] in aqueous solution was investigated by using the first principle of nature. The formation energy was calculated to be the smallest for Si-doped BP at 2.608[Formula: see text]eV, indicating the best structural stability. The adsorption energy was calculated and showed that the doped BP is more capable of adsorbing Pb[Formula: see text] than the intrinsic BP, with the S-doped BP having the strongest adsorption capacity of 0.151[Formula: see text]eV. The density of states was calculated and showed that the bandgaps of the doped BP are all smaller than the 1.3[Formula: see text]eV of the intrinsic BP, indicating that the doping can improve electrical conductivity of the adsorption system. The charge transfer was calculated and showed that S doping, O doping, Cu doping and Zn doping enhanced the ionic bonding between BP surface atoms and Pb[Formula: see text], while Si doping weakened the ionic bonding. The charge transfer of S doping was the largest at 1.371[Formula: see text]e, indicating that S-doped BP had the strongest ability to adsorb Pb[Formula: see text].
Funder
the National Natural Science Foundation of China
the Natural Science Foundation of Liaoning Province
Liaoning Provincial Department of Education Project
the Educational Department of Liaoning Province
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献