Research on surface roughness prediction method based on composite penalty regression model

Author:

Ding Dong1,Ji Zhicheng1,Wang Yan1

Affiliation:

1. Engineering Research Center of IoT Technology, Applications Ministry of Education, Jiangnan University, Wuxi 214122, China

Abstract

With the development of manufacturing technology, traditional empirical formulas are hard to deal with the relationships between complex manufacturing techniques and surface roughness. Current data fitting-based modeling methods often do not consider the influence of various factors on surface roughness and lack data cleaning capability. This paper proposes a method to reduce the dimension of data features, which includes the Lasso model to determine the correlation degree of processing parameters and roughness, and solves the possible sparse coefficient relationship between processing parameters and roughness. The ridge regression is also introduced to predict the workpiece surface roughness. The results show that compared with the existing prediction model, this prediction method has high accuracy when given a small amount of training data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3