The porosity formation mechanism in the laser-welded butt joint of 8 mm thickness Ti-6Al-4V alloy: Effect of welding speed on the metallurgical pore formation

Author:

Tian Deyong1,Gao Zhuanni1,Wang Feiyun1,Yan Tingyan1,Yu Min1,Zhan Xiaohong1ORCID

Affiliation:

1. National Key Laboratory of Science and, Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

The high energy density beam welding techniques, such as laser and electron beam welding process, have been widely used in industrial applications. In this study, the butt structures of Ti-6Al-4V alloys with the thickness up to 8 mm are successfully joined by the laser welding process. The macromorphology and microstructures of the welded joints are investigated by a scanning electron microscope (SEM). The penetration increases from 5.91 mm to 9.37 mm with the decrease of welding speed from 1.2 m/min to 0.8 m/min under the condition of equal laser power. The acicular [Formula: see text] is formed in the fusion zone, resulting from high cooling rate during the process. The metallurgical porosity formation is proposed by investigating the distribution of Al and H elements around the pores. It is concluded that the pores in the weld bead are induced by aluminum vapor and hydrogen gas from the molten pool. The diameter of metallurgical pore has a tendency to increase with the decrease of welding speed.

Funder

the Foundation of National Key Laboratory of Science and Technology on Helicopter Transmission

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3