Affiliation:
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract
First-principles calculations have been performed to investigate the doping defects in CuI with group-IIB elements such as Zn, Cd and Hg. The calculated transition energies for substitutional Zn, Cd and Hg are 1.32, 1.28 and 0.60 eV, respectively. These group-IIB elements at the substitutional sites complex with a copper vacancy [Formula: see text] have the lower formation energies as compared to dopants located at the substitutional sites or interstitial sites, respectively. Among all the complex defects considered, [Formula: see text] has the lowest formation energy and it induces the acceptor level [Formula: see text] eV above the valence-band maximum (VBM), which is close to the acceptor level [Formula: see text] eV of [Formula: see text], suggesting that Hg may be a good dopant for CuI to improve its p-type conductivity.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献