Efficient and bright phosphorescent organic light-emitting diodes adopting MoO3/PEDOT:PSS as dual hole injection layers

Author:

Zhang Nan1,Chen Yang1,Wang Yan-Hui1

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China

Abstract

It has been demonstrated that high efficiency and brightness can be achieved in phosphorescent organic light-emitting diodes (PHOLEDs) by using molybdenum oxide (MoO3)/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as dual hole injection layers (HILs) on indium tin oxide (ITO) substrate. The dual HILs were simply fabricated by spin-coating PEDOT:PSS solution on a thin MoO3 layer deposited by vacuum thermal evaporation. This work reveals that PEDOT:PSS coating on MoO3 resulted in a smoother surface, simultaneously MoO3 lamella prevented acid corrosion of PEDOT:PSS on ITO. Meanwhile, with the insertion of PEDOT:PSS and MoO3 as HILs between anode and hole transporting layer (HTL), the energy barrier has been reduced and gave rise to effective hole injection. OLEDs with dual HILs resulted in the maximum current efficiency (CE) of 61.3 cd A[Formula: see text] and maximum luminance of 112200 cd cm[Formula: see text], which showed a superior performance compared to those devices with single HIL of PEDOT:PSS or MoO3. Our results proved the composition of PEDOT:PSS and MoO3 as HILs were beneficial for high performance OLEDs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3