A new approach of analyzing time-varying dynamical equation via an optimal principle

Author:

Zhao Hui1,Li Lixiang2,Peng Haipeng2,Kurths Jürgen3,Xiao Jinghua1,Yang Yixian24,Li Ang5

Affiliation:

1. State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Potsdam Institute for Climate Impact Research, Potsdam D-14473, Germany

4. State Key Laboratory of Public Big Data, Guizhou 550025, China

5. School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

In this paper, an innovative design approach is proposed to solve time-varying dynamical equation, including matrix inverse equation and Sylvester equation. Based on the precondition of the existing solution of time-varying dynamical equation, different from previous approach to solve unknown matrix, an optimal design principle is used to solve the unknown variables. A performance index is introduced based on the inherent properties of the time-varying dynamical equation and Euler equation. The solution of time-varying dynamical equation is converted to an optimal problem of performance index. Furthermore, convergence and sensitivity to additive noise are also analyzed, and simulation results confirm that the method is feasible and effective. Especially, in simulations we design a tunable positive parameter in the dynamic optimization model. The tunable parameter is not only helpful to accelerate its convergence but also reduce its sensitivity to additive noise. Meanwhile the comparative simulation results are shown for the convergence accuracy and robustness of this method.

Funder

National Natural Science Foundation of China

Beijing City Board of Education Science and Technology Key Project

Beijing City Board of Education Science and Technology Project

National Key Research and Development Program

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3