Tight-binding model in the theory of disordered crystals

Author:

Repetsky S.1,Vyshyvana I.1,Kruchinin S.2,Bellucci S.3

Affiliation:

1. Institute of High Technologies, Taras Shevchenko Kyiv National University, Kyiv, Ukraine

2. Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

3. INFN-Laboratori Nazionali di Frascati, Via E. Fermi, 40, 00044 Frascati, Italy

Abstract

This paper presents a new method of describing electronic spectrum, thermodynamic potential, and electrical conductivity of disordered crystals based on the Hamiltonian of multi-electron system and diagram method for Green’s functions finding. Electronic states of a system were described by multi-band tight-binding model. The Hamiltonian of a system is defined on the basis of the wave functions of electron in the atom nucleus field. Electrons scattering on the oscillations of the crystal lattice are taken into account. The proposed method includes long-range Coulomb interaction of electrons at different sites of the lattice. Precise expressions for Green’s functions, thermodynamic potential and conductivity tensor are derived using diagram method. Cluster expansion is obtained for density of states, free energy, and electrical conductivity of disordered systems. We show that contribution of the electron scattering processes to clusters is decreasing along with increasing number of sites in the cluster, which depends on small parameter. The computation accuracy is determined by renormalization precision of the vertex parts of the mass operators of electron-electron and electron-phonon interactions. This accuracy also can be determined by small parameter of cluster expansion for Green’s functions of electrons and phonons.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3