Neuron circuit made of a single locally-active memristor

Author:

Yan Yan1ORCID,Jin Peipei1ORCID,Shi Jiaping1ORCID,Wang Guangyi12ORCID,Liang Yan1ORCID,Dong Yujiao1ORCID,Chen Long1ORCID

Affiliation:

1. Institute of Modern Circuit and Intelligent Information, Hangzhou Dianzi University, Hangzhou, Zhejiang, China

2. Qilu Institute of Technology, Jinan, Shandong, China

Abstract

Neuromorphic computing, inspired by the human brain’s architecture, is expected to break the physical limits of transistors and von Neumann bottleneck. The multiple internal state variables of higher-order memristors (second-order or above) possess dynamic complexity and adaptability, enabling them to mimick the characteristics of biological neurons, which are very important building blocks for neuromorphic computing. This paper presents a simple neuron circuit containing a single second-order current-controlled locally-active memristor (LAM). The pinched hysteresis loop and DC V–I curve of the proposed second-order LAM show good odd symmetry. Applying small signal analysis method, we obtain the small-signal equivalent circuit of the neuron circuit, showing a [Formula: see text] parallel structure and an edge of chaos kernel in its locally-active domain. Also, we draw a parameter classification of the neuron circuit, showing four symmetrical edge of chaos domains, which plays an important role in biphasic action potentials. Finally, we demonstrate that the simple neuron circuit can produce monophasic action potentials, biphasic action potentials and co-existing neuromorphic phenomena via subcritical Hopf bifurcation with different input, verifying the simple circuit is suitable as artificial neurons.

Funder

the Science Research Foundation of Hangzhou Dianzi University

the National Natural Science Foundation of China

the Zhejiang Provincial Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3