Performance improvement of MF-DFA on feature extraction of skin lesion images

Author:

Wang Jian123,Zhang Yudong1,Wang Zhaohu4,Jiang Wenjing1,Yang Mengdie1,Huang Menghao1,Kim Junseok5ORCID

Affiliation:

1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. Center for Applied Mathematics of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Jiangsu International Joint Laboratory on System, Modeling and Data Analysis, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Marketing and Logistics Management, Nanjing University of Finance and Economics, Nanjing 210023, China

5. Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

Abstract

In this paper, we propose an improved algorithm based on the original two-dimensional (2D) multifractal detrended fluctuation analysis (2D MF-DFA) that involves increasing the number of cumulative summations in the computational steps of 2D MF-DFA. The proposed method aims to modify the distribution of the generalized Hurst exponent to ensure that skin lesion image features are extracted based on enhanced multifractal features. We calculate the generalized Hurst exponent using 0, 1, or 2 cumulative summation processes. A support vector machine (SVM) is adopted to examine the classification performance under these three conditions. Computation shows that the process involving two cumulative summations achieves an accuracy, sensitivity, and specificity of [Formula: see text], [Formula: see text], and [Formula: see text], respectively, which indicates that its performance is much better than with 0 and 1 cumulative summations.

Funder

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Jiangsu shuangchuang project

Korea University Grant

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3