Pore size fractal dimension for characterizing Au/TiO2 catalyst

Author:

Mahmood Asif1

Affiliation:

1. Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract

The quality and assessment of a catalyst can be documented in detail by the application of pore size. This research aims to calculate fractal dimension from the relationship among pore size, maximum pore size and wetting phase saturation and to confirm it by the fractal dimension derived from the relationship among the ratio between surface area per unit pore volume, entry surface area per unit pore volume and wetting phase saturation. In this research, pore size was measured on Au/TiO2 using Brunauer–Emmett–Teller (BET) surface area. Two equations for calculating the fractal dimensions have been employed. The first one describes the functional relationship between wetting phase saturation, pore size, maximum pore size and fractal dimension. The second equation implies to the wetting phase saturation as a function of surface area per unit pore volume, entry surface area per unit pore volume and the fractal dimension. Two procedures for obtaining the fractal dimension have been utilized. The first procedure was done by plotting the logarithm of the ratio between pore size and maximum pore size versus logarithm wetting phase saturation. The positive slope of the first procedure = 3 − Df (fractal dimension). The second procedure for obtaining the fractal dimension was determined by plotting the logarithm of the ratio between surface area per unit pore volume, entry surface area per unit pore volume versus the logarithm of wetting phase saturation. The negative slope of the second procedure = Df − 3. It was found that the plasma + thermally treated Au/TiO2 has the highest fractal dimension value owing to possibility of having holes and channels. The results also show similarity between pore size fractal dimension and surface area per unit pore volume fractal dimension. In our case, as conclusions, the higher the fractal dimension, the better the catalytic activity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3