Information pattern stability in memristive Izhikevich neural networks

Author:

Takembo Clovis Ntahkie12ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, College of Technology, University of Buéa, P. O. Box 63, Buéa, Cameroon

2. Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon

Abstract

In this paper, modulational instability (MI) of information via membrane potential is studied analytically and numerically in an improved Izhikevich neural network under electromagnetic induction. By applying the powerful discrete multiple scale expansion method, a spatiotemporal nonlinear amplitude differential-difference equation governing the information dynamics is derived from the generic model. Linear stability of plane impulse wave solution is then performed on the latter and the impact of electromagnetic induction feedback through the memristor couplings is portrayed on the growth rate diagram. From the diagram, it is found that negative memristor coupling parameter decreases the critical amplitude while positive parameter increases the critical amplitude. To support our analytical predictions, numerical simulations are performed and data selected from the unstable zone of MI lead to the formation of localized solitonic energy patterns, related to the energy coding patterns in the nervous system. Furthermore, the sampled time series for membrane potential under the influence of memristor coupling revealed the breakdown of action potential into multiple impulse-wave trains for high parameter values thus confirming an analytical prediction. Our results provide a potential way to manipulate information coding in the brain.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3