Collision dynamics of proton to water dimer at 250 eV

Author:

Wang Zhiping12,Zhang Fengshou2,Xu Xuefeng1,Wang Yanbiao1,Qian Chaoyi1

Affiliation:

1. Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China

2. The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

Abstract

Applying a real-space, real-time implementation of time-dependent density functional theory coupled to molecular dynamics (TDDFT-MD) non-adiabatically, we study the ionization and fragmentation of water dimer in collision with a proton at 250 eV. Four different incident orientations with various impact parameters are employed to account for orientation effects. The reaction channels, electronic density evolution, scattering pattern and energy loss of proton are obtained. We find that proton is scattered away for all impact parameters and the head-on collision effects the energy loss of proton dominantly as well as the scattering angle. The locations of peaks of the scattering angles are similar to those corresponding to the energy loss. The single-electron capture, the double-electron capture as well as the total electron capture cross-sections are obtained. We find that the single-electron capture cross-section contributes most to the total electron capture cross-section and the calculated total electron capture cross-section is in reasonable agreement with experimental and other theoretical results with respect to water gas and liquid water.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3