Analysis of the mechanism of the effect of N–H–O impurities on diamond growth under HPHT

Author:

Cai Zhenghao1ORCID,Wang Zhiwen1,Zhao Hongyu1,Li Ming1,Li Bowei1,Chen Liangchao2,Ma Hongan1,Jia Xiaopeng1

Affiliation:

1. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin 130012, China

2. Key Laboratory of Material Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450052, China

Abstract

In this work, diamond crystals were synthesized with N–H–O impurities by the temperature gradient method (TGM) under high pressure and high temperature (HPHT) conditions using FeNi alloy as the metal solvent (MS). The results indicated that the spontaneous nucleation rate and proportion, growth characteristics, surface growth texture, and the impurity concentration of diamond crystals changed drastically upon changing the impurity content in the system. Mutual diffusion between the MS and carbon source (CS) was also blocked, which seriously inhibited the growth rate of diamond crystals. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses corroborated that the zero-valent iron (Fe0) and nickel (Ni0) contents declined after N–H–O impurities were introduced. The newly formed graphite can be found in the MS, but the ferric carbide disappears. XPS also confirmed shifts in the binding energy of FeNi MS peaks, more iron oxide and nickel oxide were identified in MS, hindering the mass transfer process. CO and NO were absorbed on the surface of MS, which hindered the surface processes of diamond growth. The formation of intermediates (Fe3C) was impeded during diamond growth and blocked the spontaneous nucleation of diamond. All of these phenomena contributed to a poor growth rate and changed the surface growth process of diamond crystals.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3