Viscous dissipation and Joule heating in case of variable electrical conductivity Carreau–Yasuda nanofluid flow in a complex wavy asymmetric channel through porous media

Author:

Ahmed Sameh E.1ORCID,Arafa Anas A. M.2ORCID,Hussein Sameh A.3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, King Khalid University, Abha, Saudi Arabia

2. Department of Mathematics, College of Science, Qassim University, Buraydah, Saudi Arabia

3. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Abstract

This paper focuses on flow structures and thermal fields of the Carreau–Yasuda (CY) nanofluid model through a two-dimensional, wavy, complicated vertical asymmetrical conduit filled with porous elements. Formulations of the viscous dissipation in the case of CY nanofluids are derived and nonlinear radiation flux as well as joule heating are examined. Buongiorno’s nanofluid approach, which involves Brownian motion and thermophoresis aspects is considered. The electrical conductivity of the suspension is considered as a variable where it depends upon the ambient temperature and concentration distributions and the Joule heating impacts are not neglected. The approach of solving the problem is contingent upon converting the system to dimensionless form then the lubrication approach with low magnetic Reynold numbers is applied. Numerical solutions are found for the resultant system, and wide ranges are considered for Weissenberg number We, non-Newtonian parameter n and Darcy number [Formula: see text], namely, [Formula: see text], [Formula: see text] and [Formula: see text], respectively. The major results indicated that gradients of the pressure are higher in case of shear thickening [Formula: see text] comparing to in the instance of shear thinning [Formula: see text]. Also, the velocity is enhanced, close to the channel’s lowest portion, as the Weissenberg number is growing. The variable electrical conductivity gives a higher mass transfer rate compared to the constant property.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3