Microstructural features and mechanical properties of 18 MeV He+ ions irradiated pure Zr

Author:

Rafique Mohsin1,Chae San1,Kim Yong-Soo1

Affiliation:

1. Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea

Abstract

Samples of pure zirconium (Zr) were irradiated by 18 MeV helium (He[Formula: see text]) ions in the dose range 0.00162–0.0324 dpa at 373 K by using Cyclotron accelerator. The atomic force microscopy (AFM) results indicated an increase in average surface roughness of Zr by increasing the irradiation dose. The AFM images revealed nucleation and growth of nano- and micro-size hillocks at lower doses (0.00162–0.00324 dpa), whereas formation of a volcano-like cavities and craters was observed within these hillocks by increasing the radiation dose from 0.00324 to 0.0324 dpa. The high-resolution X-ray diffraction (XRD) results showed a variation in the intensities and positions of the diffraction peaks after the irradiation. The transmission electron microscopy (TEM) results reported a significant decrease in the grain size after the He[Formula: see text] irradiation. The values of grain size, calculated using the TEM, were found to be in good agreement with the crystallite size calculated using the XRD analysis. The yield stress (YS) was increased by increasing the irradiation dose up to 0.0162 dpa, however, the YS exhibited a decreasing trend with a further increase of the dose. The changes in YS were elucidated by grain size reduction and localized heating at higher doses.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of He-ion irradiation on microstructures of low activation Ti-Ta-V alloy from atomic simulations and irradiation experiments;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2023-10

2. Helium irradiation-induced ultrahigh hardening in niobium;Acta Materialia;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3