Affiliation:
1. State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2. School of Information, University of International Business and Economics, Beijing 100029, China
Abstract
For a nonlinear Schrödinger–Hirota equation with the spatio-temporal dispersion and Kerr law nonlinearity in nonlinear optics, we derive a Lax pair, a Darboux transformation and two families of the periodic-wave solutions via the Jacobian elliptic functions dn and cn. We construct the linearly-independent and non-periodic solutions of that Lax pair, and substitute those solutions into the Darboux transformation to get the rogue-periodic-wave solutions. When the third-order dispersion or group velocity dispersion (GVD) or inter-modal dispersion (IMD) increases, the maximum amplitude of the rogue-periodic wave remains unchanged. From the rogue-dn-periodic-wave solutions, when the GVD decreases, the minimum amplitude of the rogue-dn-periodic wave decreases. When the third-order dispersion decreases, the minimum amplitude of the rogue-dn-periodic wave rises. Decrease of the IMD causes the period of the rogue-dn-periodic wave to decrease. From the rogue-cn-periodic-wave solutions, when the GVD increases, the minimum amplitude of the rogue-cn-periodic wave decreases. Increase of the third-order dispersion or IMD leads to the decrease of the period.
Funder
National Natural Science Foundation of China
State Key Laboratory of Information Photonics and Optical Communications
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献