Affiliation:
1. Faculty of Physics, Shahrood University of Technology, Shahrood 3619995161, Iran
Abstract
Thin film technology is significant in technological progress and modern research because it allows for the production of optoelectronic devices with improved characteristics. Because of its superior chromatic efficiency, tungsten oxide (WO3) is one of the best candidates for energy-saving applications. In this study, undoped and tin (Sn)-doped WO3 films were grown on top of WO3 seed layers directly by a facile hydrothermal route at a temperature as low as 110∘C for 24[Formula: see text]h. The seed layers were also deposited on top of glass substrates using spray pyrolysis. The results of tin doping on the structural, optical, and morphological characteristics of the WO3:Sn films were studied. X-ray diffraction patterns show that peak intensities increase significantly by adding Sn and the films’ crystallinity was improved by rising Sn content. In the visible region, the average optical transmittance is around 13% and the optical bandgap changes from 2.61[Formula: see text]eV to 2.81[Formula: see text]eV, by increasing the dopant amount. Finally, the room temperature photoluminescence of samples shows intense green light emissions. The results of this research can be beneficial for the fabrication and performance optimization of electrical and optical devices such as gas sensors, electrochromic devices, and photosensors.
Publisher
World Scientific Pub Co Pte Ltd