Investigation of Sn-doped WO3 thin films: One-step deposition by hydrothermal technique, characterization, and photoluminescence study

Author:

Buzhabadi Hamid1,Rahmani Mohammad Bagher1ORCID,Damghani Mina1

Affiliation:

1. Faculty of Physics, Shahrood University of Technology, Shahrood 3619995161, Iran

Abstract

Thin film technology is significant in technological progress and modern research because it allows for the production of optoelectronic devices with improved characteristics. Because of its superior chromatic efficiency, tungsten oxide (WO3) is one of the best candidates for energy-saving applications. In this study, undoped and tin (Sn)-doped WO3 films were grown on top of WO3 seed layers directly by a facile hydrothermal route at a temperature as low as 110C for 24[Formula: see text]h. The seed layers were also deposited on top of glass substrates using spray pyrolysis. The results of tin doping on the structural, optical, and morphological characteristics of the WO3:Sn films were studied. X-ray diffraction patterns show that peak intensities increase significantly by adding Sn and the films’ crystallinity was improved by rising Sn content. In the visible region, the average optical transmittance is around 13% and the optical bandgap changes from 2.61[Formula: see text]eV to 2.81[Formula: see text]eV, by increasing the dopant amount. Finally, the room temperature photoluminescence of samples shows intense green light emissions. The results of this research can be beneficial for the fabrication and performance optimization of electrical and optical devices such as gas sensors, electrochromic devices, and photosensors.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3