Experimental study of the effects of femtosecond laser power on the induced-plasma geometry, supercontinuum white light generation and conical emission in air

Author:

Sanny A. I.1,Loh W. M. Edmund1ORCID

Affiliation:

1. School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract

This paper presents the experimental investigation of the changes in the geometrical shape of femtosecond laser-induced plasma in air under different laser power, and its effects on supercontinuum white light generation and conical emission. When a femtosecond laser is focused into a tiny spot in air, optical breakdown of air molecules occurs and this leads to the generation of plasma filament whose geometrical size and shape depend on laser power. This process is then followed by two light-emitting processes, namely supercontinuum white light generation and conical emission, both of which scatter light that reveals the characteristics of the plasma filament. Our experiment shows that the laser-induced plasma becomes thinner and longer at high average laser power but appears thick and round at lower laser power. At higher laser power, conical emission which scatters laser light in the forward direction dominates the scattering process while at lower laser power, it is the scattering of supercontinuum white light in all directions that plays a bigger role. The intricate rainbow-like pattern formed on a white screen located far away in the forward direction reveals sophisticated nonlinear optical processes that take place in conical emission which slowly diminishes as the laser power is gradually reduced.

Funder

Ministry of Higher Education, Malaysia

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3