An improved car-following model considering the impact of safety messages

Author:

Li Tenglong1ORCID,Hui Fei1,Zhao Xiangmo1

Affiliation:

1. College of Information Engineering, Chang’an University, Xi’an 710064, China

Abstract

The existing car-following models of connected vehicles commonly lack experimental data as evidence. In this paper, a Gray correlation analysis is conducted to explore the change in driving behavior with safety messages. The data mining analysis shows that the dominant factor of car-following behavior is headway with no safety message, whereas the velocity difference between the leading and following vehicle becomes the dominant factor when warning messages are received. According to this result, an extended car-following model considering the impact of safety messages (IOSM) is proposed based on the full velocity difference (FVD) model. The stability criterion of this new model is then obtained through a linear stability analysis. Finally, numerical simulations are performed to verify the theoretical analysis results. Both analytical and simulation results show that traffic congestion can be suppressed by safety messages. However, the IOSM model is slightly less stable than the FVD model if the average headway in traffic flow is approximately 14–20 m.

Funder

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

National Natural Science Foundation of China

111 Project

Key Research and Development Program of Shaanxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3