3D printed stretchable sensor based on silver nanowires-polydimethylsiloxane

Author:

Li Qiang1ORCID,Sang Shengbo1,Zhang Qiang1,Pei Zhen1

Affiliation:

1. MicroNano System Research Center, College of Information and Computer and Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

As a new rapid additive manufacturing technology that has emerged in recent years, 3D printing technology can realize the precise manufacturing of complex and flexible sensor structures. In this study, a sensor was fabricated by injecting silver nanowires (AgNWs) ethanol solution into stretchable polydimethylsiloxane (PDMS). The substrate was used in two design configurations through a 3D printing template method, i.e. “straight” and “wave”. Compared to the straight sensor, the structural design of the wave sensor could increase the stretch range and sensitivity. In particular, the stretch range increased by 26.1% and the sensitivity improved by 96.0%. The stretchable sensor was successfully applied in pronunciation recognition and gait detection. Therefore, the stretchable sensor is also expected to be further used in fields such as foldable phones and wearable physiological signal sensors.

Funder

National Natural Science Foundation of China

Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3