Heat and mass transfer analysis of conducting non-Newtonian nanofluid flows over an elongating sheet with a non-uniform heat source

Author:

Reddy M. Vinodkumar1ORCID,Meenakumari R.2ORCID,Sucharitha G.2ORCID,Ali F.3ORCID,Zafar S. S.3ORCID,Lakshminarayana P.2ORCID

Affiliation:

1. Department of Mathematics, Malla Reddy Engineering College (Autonomous), Medchal Malkajgiri District, Secunderabad 500100, Hyderabad, India

2. Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

3. Department of Mathematical Sciences, Federal Urdu University of Arts, Sciences & Technology, Gulshan-e-Iqbal Karachi 75300, Pakistan

Abstract

Nanofluids help in many fields to improve the performance of thermal systems by augmenting heat transfer rates through their thermophysical properties. The performance of the nanofluids with various base fluids may be different. Therefore, the study and comparison of behaviors of various nanofluids are useful in several applications such as fuel as a coolant in automobiles, and in medical and electronic equipment to reduce the thermal resistance. This research proposed a novel model to investigate the flow behavior of three different nanofluids over an elongating surface in the presence of a non-uniform heat source and thermal radiation effects. This investigation describes how the considered nanofluids behave in the presence of a transverse magnetic field, and other effects. The proposed governing boundary layer partial differential equations (PDEs) are reformed into a system of nonlinear ordinary differential equations (ODEs) by introducing the proper similarity transformation. The finalized equations are solved numerically with the help of the ND solve package in Mathematica software. We intended how the fluid flow and heat transfer are affected by non-dimensional controlling factors with the help of graphics. Further, the calculations and discussions are accompanied by the numerical values of the skin friction coefficient and heat and mass transfer rates. According to the current findings, the Maxwell nanofluid exhibits superior performance in velocity, and the Oldroyd-B nanofluid shows more concentration and less temperature. As a special case, the results of this investigation are compared with the existing results, and found a good agreement between the results.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3