Affiliation:
1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2. Yunnan Provincial Academy of Science and Technology, Kunming 650000, China
Abstract
The effects of semi-solid extrusion temperature change, extrusion pressure, SiC content and T5 heat treatment on the microstructure, mechanical properties, and wear resistance of SiC particle strengthened high aluminum zinc-base alloy [Formula: see text] composites were studied. The results show that semi-solid extrusion broke the dendrites of [Formula: see text] composites, refined their grain structure, and improved particle aggregation. The density, hardness, yield strength, tensile strength and elongation of [Formula: see text] composites first increased and then decreased when the extrusion temperature and SiC content increased, and also increased when the extrusion pressure rose. The optimal extrusion temperature, pressure and SiC content are 475[Formula: see text], 15 MPa and 10 wt.%, respectively. T5 heat treatment further refined the crystalline grains and promoted [Formula: see text] and [Formula: see text] to precipitate as strengthening phases, which improve the mechanical properties and wear resistance of [Formula: see text] composites. Consequently, the hardness, yield strength, tensile strength and elongation of the heat-treated composites improved by 18.99%, 9.66%, 4.93% and 9.76%, respectively. The wear loss of the heat-treated composites reduced by 31.65% under a load of 1600 N and a rotational speed of 200 r/min compared with the as-cast composites.
Funder
National Natural Science Foundation of China
Applied Basic Research Programs of Yunnan Province, China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献