Structural properties of liquid aluminosilicate with varying Al2O3/SiO2 ratios: Insight from analysis and visualization of molecular dynamics data

Author:

Yen N. V.1,Lan M. T.1,Vinh L. T.2,Hong N. V.1

Affiliation:

1. Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam

2. Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, 19 Nguyen Huu Tho Str., Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam

Abstract

Molecular dynamics (MD) simulations and visualizations were explored to investigate the changes in structure of liquid aluminosilicates. The models were constructed for four compositions with varying Al2O3/SiO2 ratio. The local structure and network topology was analyzed through the pair of radial distribution functions, bond angle, bond length and coordination number distributions. The results showed that the structure of aluminosilicates mainly consists of the basic structural units TO[Formula: see text] (T is Al or Si; y = 3, 4, 5). Two adjacent units TO[Formula: see text] are linked to each other through common oxygen atoms and form continuous random network of basic structural units TO[Formula: see text]. The bond statistics (corner-, edge- and face- sharing) between two adjacent TO[Formula: see text] units are investigated in detail. The self-diffusion coefficients for three atomic types are affected by the degree of polymerization (DOP) of network characterized by the proportions of nonbridging oxygen (NBO) and Q[Formula: see text] species in the system. It was found that Q4 and Q3 tetrahedral species (tetrahedron with four and three bridging oxygens, respectively) decreases, while Q0 (with four nonbridging oxygen) increase with increasing Al2O3/SiO2 molar ratio, suggesting that a less polymerized network was formed. The structural and dynamical heterogeneities, micro-phase separation and liquid–liquid phase transition are also discussed in this work.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3