Representation of freshwater aquaculture fish behavior in low dissolved oxygen condition based on 3D computer vision

Author:

Bao Y. J.12,Ji C. Y.2,Zhang B.1,Gu J. L.1

Affiliation:

1. School of Electrical and Photoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213032, China

2. College of Engineering, Nanjing Agriculture University, Nanjing 210031, China

Abstract

Dissolved oxygen (DO) plays an important role in industrialized freshwater aquaculture. Such deficiencies such as the high cost of water-quality monitoring system and the failure to accurately monitor or describe aquaculture water-quality existed in freshwater aquaculture water-quality monitoring system. Here, a kind of representation method applied to characterize industrialized aquaculture fish behavior in different degrees of DO deficiency is based on three-dimensional (3D) Computer Vision. 3D coordinate values of aquaculture fishes in water acquired from 3D Computer Vision Device by processing aquaculture fish image are applied to represent such parameters as the average activity and height of aquaculture fish in water. This method for representing different behaviors of industrialized freshwater aquaculture fish under the condition of anoxia is realized by using these parameters and combing with the experience of aquaculture. The results show that the representation of industrialized freshwater aquaculture fish based on 3D Computer Vision System can be applied to describe industrialized aquaculture fish behavior and effectively compensate for the shortfall spatial location of aquaculture fish unable to acquire from 2D monitoring system, which is helpful for the accurate and reasonable control of DO in aquaculture.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3