Affiliation:
1. College of Transportation, Shandong University of Science and Technology, No. 579, Qianwangang Road, Qingdao 266590, China
Abstract
Traffic flow dynamics and energy consumption differs under dissimilar weather conditions, while seldom investigations have been conducted with a cellular automata model. In this paper, the friction coefficient between ground and tire is considered as the quantitative label of weather, a dynamic safe gap based on friction coefficient to avoid rear-end crash is introduced. We developed a safer one-dimensional model to examine the kinetic energy consumption under different weathers. Numerical results show that previous models overestimated the kinetic energy consumption in medium density flow (density [Formula: see text]0.5). In medium flow, speed limit will not reduce energy consumption on rainy and snowy days in most cases, but is necessary for prevention of accidents. Inversely, the effect of speed control on energy consumption is obvious under extreme weather. Our work can promote a better understanding of traffic dynamics, reduce energy dissipation and be applied to real traffic management.
Funder
Key R&D Project of Shandong Province
Scientific Research Foundation of Shandong University of Science Technology for Recruited Talents
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献