Finite element modeling and simulation of ultrasensitive film bulk acoustic resonator enabled by micropillar structure

Author:

Peng Jie1ORCID,Niu Haoran1,Liu Jinlin1,Yang Ya-Nan1,Zhu Junze1,Chen Da12,Liu Yijian1

Affiliation:

1. College of Electronics and Information Engineering, Shandong University of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China

2. Shandong University of Science and Technology, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, 579 Qianwangang Road, Qingdao 266590, China

Abstract

Portable and ultra-sensitive film bulk acoustic resonator (FBAR) is a promising device to satisfy the requirement of detecting gas and biological molecule. In this work, a novel sensing device was developed to achieve ultrahigh sensitivity, by coupling polymer micropillars with a FBAR substrate to form a two-degrees-of-freedom resonance system (FBAR-micropillars). We systematically investigated the effects of micropillar structure on the characteristics of FBAR-micropillars device by finite element method (FEM). It was found that the resonant frequency shift increased with increasing the height of micropillars (h) within a certain range, and the FBAR-micropillars device displayed nonlinear frequency response, which was opposite to the linear response of conventional FBAR devices. In addition, a positive resonant frequency shift was captured near the “coupled resonant point” of the FBAR-micropillars device. The geometric parameters of micropillars, including micropillar diameter and micropillar spacing could also cause a change of Q-factor and mass sensitivity. The optimized design of the proposed device achieved a threefold improvement in sensitivity relative to conventional FBAR without pillars, suggesting a feasible method to improve the mass sensitivity of acoustic resonators.

Funder

National Natural Science Foundation of China

Shandong University Youth Innovation Supporting Program

Key Laboratory for Robot and Intelligent Technology of Shandong Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3