A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure

Author:

Li Linjia1ORCID,Yang Yang12ORCID,Yuan Zhenzhou1,Chen Zhi1

Affiliation:

1. School of Traffic and Transportation, Beijing Jiaotong University, No. 3, Shangyuancun Haidian District, Beijing 100044, China

2. School of Transportation Science and Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China

Abstract

Urban traffic control has become a big issue to help traffic management in recent years. With data explosion, Intelligent Transportation System (ITS) is developing rapidly. ITS is an advanced data-based method for traffic control, which requires timely and effective information supply. This research aims at providing real-time and accurate traffic flow data by intelligent prediction method. Applying multiple road traffic flow data of the Caltrans Performance Measurement System (PeMS) and separating the time series, the mechanism of spatial-temporal differences was taken into consideration. Based on the basic Long Short-Term Memory (LSTM) model, an improved LSTM model with Dropout and Bi-structure (Bi-LSTM) for traffic flow prediction was presented. In the prediction process, we applied three models including the improved Bi-LSTM model, Gated Recurrent Unit (GRU) model and Linear Regression in the experiment, and made a comparison from aspects of model structure complexity, operating efficiency and prediction accuracy. To validate the portability of the prediction model, the features of traffic flow from different datasets were further analyzed. The experimental results show that the improved Bi-LSTM model performs best in traffic flow prediction with comprehensive rationality, which reaches an accuracy of about 92% when considering temporal differences. Particularly, the specific factors of traffic situations and locations which is more applicable to be predicted by the improved Bi-LSTM model are summarized considering spatial differences. This research proposes an advanced and accurate model to provide real-time and short-term traffic flow prediction data, which is of great help to intelligent traffic control. Considering the mechanism between model and road traffic properties, the results suggest that it is more applicable in urban commercial area.

Funder

National Key R&D Program of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3