Study on adsorption of CO and CO2 by graphene gas sensor

Author:

Tian Wenchao1,Niu Jiahao1ORCID,Li Wenhua1,Liu Xiaohan1

Affiliation:

1. School of Electro-Mechanical Engineering, Xidian University, Number 2 Taibai South Road, Xi’an 710071, China

Abstract

The two-dimensional (2D) plane of graphene has many active sites for gas adsorption. It has broad application prospects in the field of MEMS gas sensors. At present, there are many experimental studies on graphene gas sensors, but it is difficult to accurately control various influencing factors in the experiments. Therefore, this paper applies the first principle based on density functional theory to study the adsorption and detection characteristics of graphene on CO and CO2. The first-principles analysis method was used to study the adsorption characteristics and sensitivity of graphene. The results show that the inductive graphene has a sensitivity of 1.55% and 0.77% for CO and CO2, respectively. The Stone–Wales defects and multi-vacancy defects have greatly improved the sensitivity of graphene to CO, which is 35.25% and 4.14%, respectively. Introduction of defects increases the sensitivity of detection of CO and CO2, but also improves the selective gas detection material of these two gases. Thus, the control and selectively introducing defects may improve the detection accuracy of the graphene CO and CO2.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province of China

Wuhu and Xidian Universities special fund for industry-university-research cooperation

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3