Structural and magnetic study of metallo-organic YIG powder using 2-ethylhexanoate carboxylate-based precursors

Author:

Hosseinzadeh S.12,Elahi P.2,Behboudnia M.1,Sheikhi M. H.3,Mohseni S. M.4

Affiliation:

1. Department of Physics, Urmia University of Technology, Urmia, Iran

2. Department of Material Science, The University of Utah, Utah, USA

3. Department of Communications and Electronics, School of Electrical and Computer Engineering, Shiraz, Iran

4. Faculty of Physics, Shahid Beheshti University, Evin 19839, Tehran, Iran

Abstract

The crystallization and magnetic behavior of yttrium iron garnet (YIG) prepared by metallo-organic decomposition (MOD) method are discussed. The chemistry and physics related to synthesis of iron and yttrium carboxylates based on 2-ethylhexanoic acid (2EHA) are studied, since no literature was found which elucidates synthesis of metallo-organic precursor of YIG in spite of the literatures of doped YIG samples such as Bi-YIG. Typically, the metal carboxylates used in preparation of ceramic oxide materials are 2-ethylhexanoate (2EH) solvents. Herein, the synthesis, thermal behavior and solubility of yttrium and iron 2EH used in synthesis of YIG powder by MOD are reported. The crystallization and magnetic parameters, including saturation magnetization and coercivity of these samples, smoothly change as a function of the annealing temperature. It is observed that high sintering temperature of [Formula: see text] to [Formula: see text] promotes the diffraction peaks of YIG, therefore, we can conclude that the formation of YIG in MOD method increases the crystallization temperature. The maximum value of saturation magnetization and minimum value of coercivity and remanence are observed for the sample sintered at [Formula: see text] which are 13.7 emu/g, 10.38 Oe and 1.5 emu/g, respectively. This study cites the drawbacks in chemical synthesis of metallo-organic-based YIG production.

Funder

Iran Nanotechnology Initiative Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3