The influence of the δ-doping on the electron transport with the finite periodic magnetic barriers nanostructure

Author:

Guo Lishuai1,Luo Jia23,Zhu Xiaolu1,Li Jianfeng1,Tuo Sheng1

Affiliation:

1. College of Electrical Engineering, Longdong University, Qingyang, Gansu 745000, China

2. School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, Southwest Jiaotong University, Chengdu 610031, China

3. Materials Research Department, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt 64291, Germany

Abstract

Periodic nanostructure is a novel method to manipulate the electronic properties in electronics. An efficient method in this paper is proposed to judge whether m identical periods’ magnetic nanostructure is a periodic structure by judging whether its physical structure and its magnetic vector potential structure both keep periodic. By investigating the influence of the [Formula: see text]-doping potential on the electron transport properties with m identical periods’ magnetic barrier nanostructure of InAs system, it shows that, firstly, the resonant peak of transmission probability, conductance, and spin polarization has been induced by splitting into (2[Formula: see text]) folds with m units nanostructure, respectively, especially when the resonant peak of transmission probability is almost close to 1 as the incident energy is lower; secondly, the height of [Formula: see text]-doping potential has an extensive influence on the resonant peak of transmission probability, which the resonant peak will be more dependent of the height of [Formula: see text]-doping potential increasing. Meanwhile, the conductance will be decreased with the height of [Formula: see text]-doping potential increasing.

Funder

National Nature Science Foundation of China

Innovation Foundation of Gansu Provincial Department of Education of China

Science and Technology Program of Qingyang, China

Science and Technology Planning Project of Qingyang, China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3