Wave propagation in a non-local piezoelectric phononic crystal Timoshenko nanobeam

Author:

He Feiyang12,Qian Denghui1ORCID,Zhai Musai3

Affiliation:

1. School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China

2. Nanjing Normal University Zhongbei College, Zhenjiang 212300, Jiangsu, China

3. College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China

Abstract

By applying non-local elasticity theory and plane wave expansion (PWE) method to Timoshenko beam, the calculation method of band structure of a non-local piezoelectric phononic crystal (PC) Timoshenko nanobeam is proposed and formulized. In order to investigate the properties of wave propagating in the nanobeam in detail, bandgaps of first four orders are picked, and the corresponding influence rules of thermo-electro-mechanical coupling fields, non-local effect and geometric parameters on bandgaps are studied. During the research works, temperature variation, external electrical voltage and axial force are chosen as the influencing parameters related to the thermo-electro-mechanical coupling fields. Scale coefficient is chosen as the influencing parameter corresponding to non-local effect. Length ratio between materials PZT-4 and epoxy and height-width ratio are chosen as the influencing parameters of geometric parameters. Moreover, all the band structures and influence rules of Timoshenko nanobeam are compared to those of Euler nanobeam. The results are expected to be of help for the design of micro and nanodevices based on piezoelectric periodic nanobeams.

Funder

National Natural Science Foundation of China

Suzhou University of Science and Technology

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3