Affiliation:
1. School of Mathematics, Jilin University, Changchun 130012, China
Abstract
Starting from a more generalized discrete [Formula: see text] matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the [Formula: see text]-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete [Formula: see text]-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.
Funder
Science and Technology Development Project of Jilin Province
Major Projects of the Ministry of Science and Technology of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献