Two contributions to the ratio of the mean secondary electron generation of backscattered electrons to primary electrons at high electron energy

Author:

Xie Ai-Gen1,Zhang Chen-Yi1,Zhong Kun1

Affiliation:

1. School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Based on the main physical processes of secondary electron emission, experimental results and the characteristics of backscattered electrons (BE), the formula was derived for describing the ratio (β angle ) of the number of secondary electrons excited by the larger average angle of emission BE to the number of secondary electrons excited by the primary electrons of normal incidence. This ratio was compared to the similar ratio β obtained in the case of high energy primary electrons. According to the derived formula for β angle and the two reasons why β > 1, the formula describing the ratio β energy of β to β angle , reflecting the effect that the mean energy of the BE W AV p0 is smaller than the energy of the primary electrons at the surface, was derived. β angle and β energy computed using the experimental results and the deduced formulae for β angle and β energy were analyzed. It is concluded that β angle is not dependent on atomic number z, and that β energy decreases slowly with z. On the basis of the two reasons why β > 1, the definitions of β and β energy and the number of secondary electrons released per primary electron, the formula for β E-energy (the estimated β energy ) was deduced. The β E-energy computed using W AV p0, energy exponent and the formula for β E-energy is in a good agreement with β energy computed using the experimental results and the deduced formula for β energy . Finally, it is concluded that the deduced formulae for β angle and β energy can be used to estimate β angle and β energy , and that the factor that W AV p0 increases slowly with atomic number z leads to the results that β energy decreases slowly with z and β decreases slowly with z.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3