High fidelity quantum blind dual-signature protocols

Author:

Zhang Ming-Hui1ORCID,Xie Jia-Hui1

Affiliation:

1. School of Information Science and Technology, Northwest University, Xi’an 710127, China

Abstract

This work proposes two kinds of fault tolerant quantum blind dual-signature (QBDS) protocols with photon quartets, which are robust against the collective-dephasing noise and collective-rotation noise, respectively. In the protocols, the initial information needs to be signed by the message owner in addition to the signer, which will be well suitable for application in some E-payment and E-government systems that require the message owner to provide authentication information. Both QBDS protocols are constructed with logical qubits which are immune to the collective noise, thereby the protocols can provide higher communication fidelity with respect to the existing quantum signature protocols. Furthermore, the protocols had been proved to be secure against some individual eavesdropping attacks. Meanwhile, the protocols satisfy the characteristics of quantum blind signature (QBS) protocols such as unforgeability, undeniability and blindness.

Funder

Young Scientists Fund

Natural Science Foundation of Shaanxi Province

The 66th batch of postdoctoral surface funds

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3