Refraction simulation of internal solitary waves for the fractional Benjamin–Ono equation in fluid dynamics

Author:

Duran Serbay1,Yokuş Asıf2,Durur Hülya3,Kaya Doğan4

Affiliation:

1. Faculty of Education, Department of Mathematics and Science Education, Adıyaman University, Adıyaman 02040, Turkey

2. Faculty of Science, Department of Mathematics, Firat University, Elazig 23100, Turkey

3. Faculty of Engineering, Department of Computer Engineering, Ardahan University, Ardahan 75000, Turkey

4. Department of Mathematics, Istanbul Commerce University, Uskudar, Istanbul, Turkey

Abstract

In this study, the modified [Formula: see text]-expansion method and modified sub-equation method have been successfully applied to the fractional Benjamin–Ono equation that models the internal solitary wave event in the ocean or atmosphere. With both analytical methods, dark soliton, singular soliton, mixed dark-singular soliton, trigonometric, rational, hyperbolic, complex hyperbolic, complex type traveling wave solutions have been produced. In these applications, we consider the conformable operator to which the chain rule is applied. Special values were given to the constants in the solution while drawing graphs representing the stationary wave. By making changes of these constants at certain intervals, the refraction dynamics and physical interpretations of the obtained internal solitary waves were included. These physical comments were supported by simulation with 3D, 2D and contour graphics. These two analytical methods used to obtain analytical solutions of the fractional Benjamin–Ono equation have been analyzed in detail by comparing their respective states. By using symbolic calculation, these methods have been shown to be the powerful and reliable mathematical tools for the solution of fractional nonlinear partial differential equations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3