Bond length (Ti–O) dependence of nano ATO3-based (A = Pb, Ba, Sr) perovskite structures: Optical investigation in IR range

Author:

Ghasemifard Mahdi1,Ghamari Misagh1,Okay Cengiz2

Affiliation:

1. Nanotechnology Laboratory, Esfarayen University of Technology, Esfarayen 9661998195, Iran

2. Department of Physics, Marmara University, Göztepe Kampüsü, Kadikög 34772, İstanbul, Turkey

Abstract

In the current study, ABO3 (A = Pb, Ba, Sr and B = Ti) perovskite structures are produced by the auto-combustion route by using citric acid (CA) and nitric acid (NA) as fuel and oxidizer. The X-ray diffraction (XRD) patterns confirmed the perovskite nanostructure with cubic, tetragonal, and rhombohedral for SrTiO3, PbTiO3, and BaTiO3, respectively. Using Scherrer’s equation and XRD pattern, the average crystallite size of the samples were acquired. The effect of Ti–O bond length on the structure of the samples was evaluated. The type of structures obtained depends on Ti–O bond length which is in turn influenced by A[Formula: see text] substitutions. Microstructural studies of nanostructures calcined at 850[Formula: see text]C confirmed the formation of polyhedral particles with a narrow size distribution. The values of optical band gaps were measured and the impact of A[Formula: see text] was discussed. The optical properties such as the complex refractive index and dielectric function were calculated by IR spectroscopy and Kramers–Kronig (K–K) relations. Lead, as the element with the highest density as compared to other elements, changes the optical constants, remarkably due to altering titanium and oxygen distance in TO6 groups.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3