Affiliation:
1. School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Abstract
We have successfully converted large volume Al particles into γ- Al 2 O 3 nanostructures by vibration milling at room temperature and successive treatment. We show that there exist special relationships among stacking fault energy (SFE), strain energy (SRE), and surface energy (SE) of the materials, including interdependence, intercompetition, and interconversion during the phase transition. SFE and SRE perform the same changing tendency, while SE just does the opposite. However, it is not the particle size but the energy state that determines the reactivity of the materials. And it is the SE that can directly determine the physical chemical reaction and the conversion into the end product rather than SFE and SRE. When SE goes up, the material reactivity and the product yield will be enhanced; and when SE goes down, the reaction and the product yield will decay. However, the state of SE depends closely on the change tendency of the SFE and SRE. That is, when SFE and SRE goes up, SE will goes down; if SFE and SRE goes down, SE will goes up. It seems that energy conservation law may be followed in a sense in the particle system if the external input keeps constant. The work may be significant for energy conversion in nano-scale and mechanosynthesis of oxide nanoparticles.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献