Magnetic and optical properties in the 1D TM–O chain compounds Sr2TMO3 (TM = Ni, Co): A first-principle investigation

Author:

Gui Hong1,Li Xin1,Zhao Zhenjie1,Xie Wenhui1

Affiliation:

1. Engineering Research Center for Nanophotonics and Advanced Instrument, Department of Physics, East China Normal University, Shanghai 200062, China

Abstract

In this paper, we have calculated the structural, electronic, magnetic and optical properties of Sr2NiO3 and Sr2CoO3 using density functional theory (DFT) within generalized gradient approximation (GGA). The crystal structure of both materials is well described with Immm (No. 71) symmetry which are isostructural with Sr2CuO3 and both are quasi-one-dimensional (1D) rectangular lattice G-type antiferromagnets, in consistent with the experimental data. Due to a distortion, Sr2CoO3 lifts the near-degeneracy [Formula: see text] and [Formula: see text] states of the local Co electronic configuration, which demonstrates a strong coupling between the structural lattice and the electronic configuration. The calculated band structure shows a band gap of 1.376 eV for Sr2NiO3 and a band gap of 1.735 eV for Sr2CoO3. Ni and Co ions are in the high-spin [Formula: see text] and [Formula: see text] configurations with the magnetic moments of 1.585 [Formula: see text] and 2.587 [Formula: see text], respectively. Based on the Heisenberg Hamiltonian model, we conclude that the superexchange intrachain TM–O–TM superexchange interaction is predominant and interaction between the 1D chains is weak. According to the calculated dielectric function, absorption spectrum and electron energy loss spectrum, the optical responses suggest that Sr2NiO3 shows the unique anisotropic structure and interaction of the application in optoelectronics.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3