Affiliation:
1. Institute of Computer Theory, East China Normal University, Shanghai 200062, China
2. Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China
3. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract
In this paper, a (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear evolution equation is studied via the Hirota method. Soliton, lump, breather and rogue wave, as four types of localized waves, are derived. The obtained N-soliton solutions are dark solitons with some constrained parameters. General breathers, line breathers, two-order breathers, interaction solutions between the dark soliton and general breather or line breather are constructed by choosing suitable parameters on the soliton solution. By the long wave limit method on the soliton solution, some new lump and rogue wave solutions are obtained. In particular, dark lumps, interaction solutions between dark soliton and dark lump, two dark lumps are exhibited. In addition, three types of solutions related with rogue waves are also exhibited including line rogue wave, two-order line rogue waves, interaction solutions between dark soliton and dark lump or line rogue wave.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献