Nonlinear dynamics of Kerr optical microresonators with spatially fluctuating loss

Author:

Dikandé Alain Moïse1ORCID

Affiliation:

1. Laboratory of Research on Advanced Materials and Nonlinear Science, Department of Physics, Faculty of Science, University of Buea, P. O. Box 63, Buea Cameroon

Abstract

Dissipative soliton crystals (the so-called soliton combs) form in Kerr microresonators as a result of the competition between the group-velocity dispersion and the Kerr nonlinearity on one hand, and the balance of cavity loss by an external pump on the other hand. In some physical contexts, the loss can fluctuate within the microresonator cavity, inducing a saturable-absorption process which impacts the dynamics of the optical field. In this study, dissipative soliton crystals are investigated in a Kerr optical microresonator with spatially fluctuating loss. The underlying mathematical model consists of a modified Lugiato–Lefever equation with a space-dependent loss, coupled to a rate equation for the fluctuating loss. Adopting an ansatz that describes the optical-field envelope as a complex function of real amplitude and real phase with a characteristic modulation frequency, the mathematical model is reduced to a set of first-order nonlinear ordinary differential equations which are solved numerically. Simulations suggest that when the homogeneous cavity loss is small enough, the impact of loss fluctuation on the soliton-comb profile is rather moderate. The effect of loss fluctuations becomes noticeable when the homogeneous loss is sizable, with the recovery time of the induced saturable-absorption process being reasonably long to promote a slow saturable absorption. An analysis of the influence of the detuning on the amplitude and phase of the dissipative soliton crystal, as well as on the spatial variation of the loss for a fixed value of the characteristic frequency, is taken into consideration in the study.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3