Modeling of the pressure drop effect using membrane distillation in the desalination process

Author:

Moushi S.1,Hader A.12,Lahcen J. Ait1,Tarras I.1,Touizi R. Et1,Ezaier Y.1ORCID,Tanasehte M.1,Krimech F. Z.1

Affiliation:

1. Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, Hassan II University, Casablanca, Morocco

2. Centre régional des métiers d’éducation et de formation Casablanca - Settat/établissement Settat, Morocco

Abstract

The desalination process using membrane distillation (MD) has recently attracted wide attention in the last few years around the world. Especially, membranes that have an asymmetric geometry, for their performance to filtrate the salt water and the high salt rejection. In this paper, the Langevin dynamics model was adopted as a simulation method to investigate the transport of salt water through the sloping membrane under a pressure drop. The surface of the used membrane is considered as a hydrophilic sloping surface. Thus, the pressure drop effect on the fluid flux was observed, which leads to attracting the salt water into pores that are randomly distributed. The influence of deposition and accumulation of the ions into pores, the incline angle of the membrane surface, and the thickness of the formed layer on the surface were investigated. In addition, the impact of biofouling is caused by the accumulation and the variation of the fluid velocity as a function of pressure drop values. The obtained results show that the relationship between the fluid velocity and the pressing force is a power law. Moreover, the increase in fluid flow velocity in the porous medium is severe in the earlier time regime, but it becomes almost constant in the second regime. However, the time desalination process increases linearly with the pressure drop. Moreover, the accumulation and deposition of ions into the pores cause a decrease in the water flow through the pores resulting in a higher pressure drop in the less inclined direction. Finally, the influence of deposition and accumulation of the salt phase into the pores on the membrane performance was remarked, resulting in a high desalination rate. The obtained results explain the salt water behavior through a porous membrane, which provides ideas for making a high membrane performance.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3