Affiliation:
1. Bio-Geosciences and Materials Engineering Laboratory, Ecole Normale Supérieure, Hassan II University, Casablanca, Morocco
2. Centre régional des métiers d’éducation et de formation Casablanca - Settat/établissement Settat, Morocco
Abstract
The desalination process using membrane distillation (MD) has recently attracted wide attention in the last few years around the world. Especially, membranes that have an asymmetric geometry, for their performance to filtrate the salt water and the high salt rejection. In this paper, the Langevin dynamics model was adopted as a simulation method to investigate the transport of salt water through the sloping membrane under a pressure drop. The surface of the used membrane is considered as a hydrophilic sloping surface. Thus, the pressure drop effect on the fluid flux was observed, which leads to attracting the salt water into pores that are randomly distributed. The influence of deposition and accumulation of the ions into pores, the incline angle of the membrane surface, and the thickness of the formed layer on the surface were investigated. In addition, the impact of biofouling is caused by the accumulation and the variation of the fluid velocity as a function of pressure drop values. The obtained results show that the relationship between the fluid velocity and the pressing force is a power law. Moreover, the increase in fluid flow velocity in the porous medium is severe in the earlier time regime, but it becomes almost constant in the second regime. However, the time desalination process increases linearly with the pressure drop. Moreover, the accumulation and deposition of ions into the pores cause a decrease in the water flow through the pores resulting in a higher pressure drop in the less inclined direction. Finally, the influence of deposition and accumulation of the salt phase into the pores on the membrane performance was remarked, resulting in a high desalination rate. The obtained results explain the salt water behavior through a porous membrane, which provides ideas for making a high membrane performance.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Condensed Matter Physics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献