Thermo-convection driven Sodium Alginate-based Darcy–Forchheimer EMHD Williamson hybrid nanofluid flow with varying thermal distribution

Author:

Das Tusar Kanti12ORCID,Paul Ashish2ORCID,Nath Jintu Mani23ORCID

Affiliation:

1. Department of Mathematics, Dudhnoi College, Dudhnoi, Goalpara 783124, Assam, India

2. Department of Mathematics, Cotton University, Guwahati 781001, Assam, India

3. Department of Mathematics, Mangaldai College, Mangaldai 784125, Assam, India

Abstract

A computational investigation is furnished to explore the responses of a Darcy–Forchheimer EMHD Williamson flow of a Sodium Alginate [Formula: see text]-based Ag-Al2O3 hybrid nanofluid passing over a vertically exponentially stretching cylinder emerged through a porous region. The prime focus of this research is to encompass the inclusion of nonlinear variations in heat distribution, Newtonian boundary heating (NBH) effects, and the influence of thermo-convection alongside suction effects. Key parameters, including thermal buoyancy, Darcy porous medium effects, heat source/sink effects, Biot number, variable thermal index, and thermal convection factor, are comprehensively analyzed as these combining factors can play a crucial role in optimizing the efficacy of several systems such as heat exchanger, material processing and geothermal system that involve the concept of thermo-transportation mechanism. The physical flow dynamics are modeled, employing suitable similarity transformations, and subsequently translated into a dimensionless form. The ensuing collection of modified nonlinear ordinary differential equations is solved by employing the Bvp4c solver bundled into the MATLAB program. Several parameters are scrutinized through graphical presentations to elucidate their impacts on the velocity curve, temperature curve, skin friction coefficient, and Nusselt index. It is worth mentioning that the heat distribution profile significantly escalated for the rising values of several factors such as electric field parameter, varying thermal index, Biot number and shape factor, but the reverse is the pattern with suction and thermo-convection effect. Also, the thermal transportation rate at the proximity of the vertical cylindrical wall appears to exhibit an increment of about an average of 47% in SA-based Williamson hybrid nanofluid compared to Williamson fluid for thermo-convective effect, NBH, and thermal buoyancy. Furthermore, the proximate shear stress rate appears to be amplified by approximately 39% in Williamson hybrid nanofluid when contrasted with Williamson fluid for electric field parameter and thermo-convection effect alongside the raised Darcy–Forchheimer factor.

Funder

Cotton Incorporated

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3