Thermoelectric properties of S-doped Cu2Se materials synthesized by high-pressure and high-temperature method

Author:

Xue Lisha1,Fang Chao1,Shen Weixia1,Shen Manjie1,Ji Wenting1,Zhang Yuewen1,Zhang Zhuangfei1,Jia Xiaopeng1

Affiliation:

1. Key Laboratory of Material Physics of the Ministry of Education, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China

Abstract

High-pressure technique is an effective route to synthesize thermoelectric materials and tune transport properties simultaneously. In this work, S-doped copper–selenium compounds [Formula: see text], [Formula: see text] were successfully synthesized by high-pressure and high-temperature (HPHT) technology in just 30 min. [Formula: see text] samples show layered morphology composed of abundant pores and lattice defects. The appropriate S introduction ([Formula: see text] and 0.03) can effectively enhance Seebeck coefficient and reduce the thermal conductivity of [Formula: see text]. Compared with the pure [Formula: see text] sample, [Formula: see text] exhibits a 30% lower thermal conductivity, but the decline of power factor by the distinctly increased electrical resistivity at high temperature results in a smaller zT at temperature [Formula: see text] K. The variations of thermoelectric properties are resulted from the competitive effects between S-doping and actual composition change (Cu:S). It indicates that S-doping is not so effective in improving the zT value of [Formula: see text] materials by high-pressure synthesis.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Key Research Project of Higher Education Institution of Henan Province

Key Project for Science and Technology Development of Henan Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3