The dynamical behavior of the capacitively coupled argon plasma driven by very high frequency

Author:

Yin Guiqin1ORCID,Jiang Yongbo1,Yuan Qianghua1ORCID

Affiliation:

1. Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China

Abstract

The dynamical behavior of the capacitively coupled Ar plasma driven by four frequencies (54, 80, 94 and 100[Formula: see text]MHz) at fixed pressure are simulated by the particle-in-cell/Monte-Carlo collisions (PIC/MCC) model based on the electromagnetic field. The magnetic field is generated by plasma current itself. The results show that the electron density, charge density, and electron temperature increase with the frequency increase when radio frequency (RF) power is 40[Formula: see text]W. The electron heating rate and argon ion heating rate near the sheath increase with the frequency increase. The high-energy electron density ([Formula: see text] [Formula: see text]eV) varies nonlinearly with the frequency increase. The high-energy electron density is highest at 80[Formula: see text]MHz among the four frequencies. The electron density, charge density, and high-energy electron density increase with RF power (30, 45, 60, and 75[Formula: see text]W) increase at 80[Formula: see text]MHz. The electron temperature decreases with RF power increase at 80[Formula: see text]MHz. The electron heating rate and argon ion heating rate near the sheath have no change with RF power increase at 80[Formula: see text]MHz. The electron energy probability distributions (EEPF) show that the number of high-energy electrons ([Formula: see text] [Formula: see text]eV) is highest at 80[Formula: see text]MHz. The reason may be the electron resonant heating that occurs in the plasma when the electron cyclotron frequency equals source frequency at 80[Formula: see text]MHz. The electron dynamics of capacitively coupled plasma is important for microelectronics etching and membrane deposition.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3