Optical fractional solitonic structures to decoupled nonlinear Schrödinger equation arising in dual-core optical fibers

Author:

Younas U.1,Muhammad J.1,Ismael Hajar F.23ORCID,Murad Muhammad Amin S.4,Sulaiman T. A.56ORCID

Affiliation:

1. Department of Mathematics, Shanghai University, No. 99 Shangda Road, Shanghai 200444, P. R. China

2. Department of Mathematics, College of Science, University of Zakho, Iraq

3. Department of Computer Science, College of Science, Knowledge University, Erbil 44001, Iraq

4. Department of Mathematics, College of Science, University of Duhok, Duhok, Iraq

5. Near East University, Operational Research Center in Healthcare, Nicosia 99138, TRNC Mersin 10, Turkey

6. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

Abstract

This paper explores a specific class of equations that model the propagation of optical pulses in dual-core optical fibers. The decoupled nonlinear Schrödinger equation with properties of M fractional derivatives is considered as the governing equation. The proposed model consists of group-velocity mismatch and dispersion, nonlinear refractive index and linear coupling coefficient. Different types of solutions, including mixed, dark, singular, bright-dark, bright, complex and combined solitons are extracted by using the integration methods known as fractional modified Sardar subequation method and modified F-expansion method. Optical soliton propagation in optical fibers is currently a subject of great interest due to the multiple prospects for ultrafast signal routing systems and short light pulses in communications. In nonlinear dispersive media, optical solitons are stretched electromagnetic waves that maintain their intensity due to a balance between the effects of dispersion and nonlinearity. Furthermore, hyperbolic, periodic and exponential solutions are generated. A fractional complex transformation is applied to reduce the governing model into the ordinary differential equation and then by the assistance of balance principle the methods are used, depending upon the balance number. Also, we plot the different graphs with the associated parameter values to visualize the solutions behaviours with different parameter values. The findings of this work will help to identify and clarify some novel soliton solutions and it is expected that the solutions obtained will play a vital role in the fields of physics and engineering.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3