Chirp form selection to produce intense and broad harmonic spectra and attosecond pulses in the presence of single and superposition initial states

Author:

Wang Yuning1,Feng Liqiang1ORCID,McCain John2,Liu Hang1

Affiliation:

1. Laboratory of Molecular Reaction Dynamics, Liaoning University of Technology, Jinzhou, 121000, China

2. Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ, London, United Kingdom

Abstract

The chirp form selection for producing intense and broad high-order harmonic spectra has been investigated when the initial state is chosen to be the single or superposition states. It is found that, for the case of a single ground initial state, the down-chirp is much better for extending the harmonic cutoff with the stronger emission intensity. Moreover, the multi-color combined field is beneficial to produce the larger harmonic cutoff and higher harmonic intensity. After the control of laser waveform, the combination of 3-color down-chirps with a proper UV pulse is the best condition to obtain the intense X-ray spectral continuum and the isolated attosecond pulse. For the case of superposition initial state, both the up-chirp and down-chirp are beneficial to generate the high-intensity spectral regions. However, with the combination of multi-color field, only the harmonic cutoff can be further extended, and the harmonic intensity presents almost no changes for the superposition initial state case. Finally, by properly choosing the 3-color up-chirps or 3-color down-chirps combined pulses, the stronger intensity harmonic spectra covering the X-ray region can be obtained, which can produce the isolated pulses of 37 as.

Funder

Natural Science Foundation of Liaoning Province

Youth Project of Liaoning Education Department, China

Innovation Project of University Students

Publisher

World Scientific Pub Co Pte Ltd

Subject

Condensed Matter Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3